TETRA'S MATH

数学と数学教育
<< リンクしたいページをまちがえていました & パブコメについて | main | takehikomさんのブログの記事のご紹介・2 >>

takehikomさんのブログの記事のご紹介・1

 takehikomさん( http://d.hatena.ne.jp/takehikom/ )から、次のブログの記事をご紹介いただきました。


[OoM] かけ算の順序は,ネットde真実? (2014.09)
http://d.hatena.ne.jp/takehikom/20140927/1411770003

[OoM] かけ算の順序を授業にすると〜イランとアメリカ
http://d.hatena.ne.jp/takehikom/20141002/1412193761

[OoM] Re: ツイートするよりパブコメ出そう
http://d.hatena.ne.jp/takehikom/20141030/1414618764


 今回これらの記事をご紹介いただいたのは、私があることのご報告とお礼をしたのがきっかけでした。今年の5月に私がtakehikomさんに、日本以外の国でかけ算がどういうふうに教えられているかを端的にまとめたページをご存知かどうかうかがったところ、次のページを教えていただいたのです。

[5×3][reprise] かけ算の式と言葉の順序 メモ
http://d.hatena.ne.jp/takehikom/20130126/1359147548

(Twitterでのやりとり)↓
https://twitter.com/tamami_tata/status/465773447700701184

 当時の私は、かけ算の順序問題についての意見を文部科学省に出す際に、グローバル化社会云々の話を絡められないかと考えていました。なので、かけ算の順序問題の背景に言語や文化が関わっていればそれが「使える」と思ったのです。しかし、いろいろ考えていくうちに、そういうアプローチはやめようと思うにいたりました。

 ということのお礼とリンクのご報告をかねてツイートさせていただいたところ、takehikomさんは私のマガジンを購入してくださり、さっそく感想を書いてくださっています。↓

[OoM] 「起こり得る場合」とかけ算 http://d.hatena.ne.jp/takehikom/20141126#20141126f1

 takehikomさんは資料のリサーチ力がすごくて、「かけ算の順序」問題にかけているエネルギーは私の比じゃないと感じています。(いや、さらっと見つけて、さらっと読んでおられるのかもしれませんが…)

 文献も資料もたくさん紹介しておられます。あまりにすごすぎてほとんどついていけていなくて、今回ご紹介いただいた記事もこのたび初めて読んだのですが(というかまだ読みきれていない)、やっぱりあまりにすごすぎて、「で、結局、どういうことなんだろう・・・takehikomさんは何がしたいのだろう・・・?」と、膨大な量のリサーチ物とそれについての所感を前に呆然としてしまう不甲斐ない私なのでした。

 なお私も、「何を考えているかよくわからない」と言われることがあるので(^_^;、この機会に自分の立場を書いておきます。

 私はもともと、現在の算数教育で「1つ分の大きさ×いくつ分」という形でかけ算の式を書くこと(「いくつ分×1つ分の大きさ」とは書かないこと)という指導が行われていることを、それほど大きな問題とは考えていませんでした。教材をつくる立場から統一感のことを考えていたし、どちらかに統一するなら「1つ分の大きさ×いくつ分」のほうが適切だと思っていたので。

 しかし、メタメタさんがこのことにやけに違和感を感じておられて(それを知ったのはずーっと前)、「どうしてだろう?」と意識するようになり、そのうちWeb上でもよく見かけるようになり、今度はそのやりとりに「どうしてだろう???」と疑問を抱くようになったしだいです。なので、このブログでもカテゴリーを作って記事を書いてきました。

 そして、Web上でいろんな人がいろんな資料をあげてくれて、テストでバツをされるところまではそんなに驚かなかったけれど、式をあたえて絵と対応づけさせる問題や、「y=x×きまった数」という式で表すこともありますといった内容の記述が検定教科書にあることがわかり、そのほかにもこの式の形を書かせることに妙に熱心な授業や教材の現状を知って、「確かにこれはよくないな…」と思うようになりました。

 一方、Web上でこの問題が延々と取り上げられているけれども、話が先に進んでいるように見えず、立場を異にするものどうしの不毛なやりとり(にさえいまはなっていない?)に終わっているように感じられ、そんななかで学校教育に対する不信感がばらまかれている状況が耐え難いものとなっていきました。

 もちろん、かけ算の順序に関わらず、延々と取り上げられて不毛なやりとりが続く議論は他にもたくさんありましょうが、こと算数教育についての話題の、特にこの問題に対しては、どうにも辛いものがあるのです。なので、この耐え難さをなんとかしたいと考え、文部科学省に意見を出して、中央教育審議会の算数・数学専門部会でこの問題を取り上げてもらえるようにできないかどうか働きかけてみる…ということを思いついたのでした。

 というのも、私の理解の根底には、「1つ分の大きさ×いくつ分」の形で書くことを、現在の算数教育から完全に排除するのは無理だし、その必要もないという考えがあり(多くの「順序固定反対意見保持者」のみなさまも、その考えは同じではないのでしょうか、違うのでしょうか。「掛算に順序はない」とシンプルに主張される方もおられるでしょうが…)、しかし実際に「行き過ぎ」があるのは確かで、そういう「行き過ぎ」がある状態では、「1つ分の大きさ×いくつ分」と書くことの意義を擁護することができないからです。

 実際私は何年か前まで、「高学年になると順序固定の発想ははずれていくと思うし、小学校の先生は高学年も教えることがあるんだから、そんなに心配しなくてだいじょうぶよ〜♪」と能天気に思ってました。でも、学校図書の教科書では比例の式まで2通りに示してあることを知り(っていうか娘の学校がその教科書を使っていた)、青ざめたしだい。

 また、すっかりおざなりになってしまっている(私にとってはかけ算の順序よりも違和感の大きかった)二重数直線のことも気になっています。何かが、おかしな方向に進んでいる。

 ところが・・・

 文部科学省に意見を出そうと思うようになって、文部科学省の資料に以前よりも目を通すようになり(といってもこれがまた膨大な量で、読んでいないに等しい状態)、文部科学省は文部科学省で考えているなぁと思うことが増えました。報道よりも、発表そのものを読んだほうがよいみたい。

 また、先日読んだ筑波大附属小算数研究部の冊子でも、共感する部分が予想より多く、問題意識が近いと感じられてほっとしたわけなのです。

 なのに、なんでこういうことが起こっているのか・・・

 と思うわけなのですが、takehikomさんの記事について何も書いていないので、次のエントリで。

(つづく)
「かけ算の順序」論争 | permalink
  

サイト内検索